標題:
a-maths~
發問:
a=ksinA,b=ksinB,c=ksinC,其中∠A+∠B+∠C=180°且k>0。利用複角公式証明a^2=b^2+c^2-2bc cosA
此文章來自奇摩知識+如有不便請留言告知
最佳解答:
a/sinA = b/sinB = c/sinC = ka = ksinA,b = ksinB,c = ksinC a^2 = b^2 + c^2 - 2bc cosA (b^2 + c^2 - a^2)/2bc = cosA LHS= (b2+c2-a2)/2bc= [(ksinB)^2+(ksinC)^2-(ksinA)^2]/2(ksinB)(ksinC)=[(sinB)^2+(sinC)^2-(sinA)^2]/2(sinB)(sinC)= [(sinB)^2+(sinC)^2-sin(180-(B+C))^2]/2(sinB)(sinC)= [(sinB)^2+(sinC)^2-sin(B+C)^2]/2(sinB)(sinC)= [(sinB)^2+(sinC)^2-(sinBcosC+cosBsinC)^2]/2(sinB)(sinC)= [(sinB)^2+(sinC)^2-(sinBcosC)^2-(cosBsinC)^2-2sinBsinCcosBcosC]/2(sinB)(sinC)= [2(sinB)^2(sinC)^2 - 2sinBsinCcosBcosC]/2(sinB)(sinC)= sinBsinC - cosBcosC = -cos(B + C)= cos(180 - (B + C))= cosA= RHS Hope it helps !!!
其他解答: