close
標題:
發問:
解下列各聯立方程。 1. { 3x+y = 7 x^2+y^2 = 41 2. { x^2+y^2+6x-8y = 0 x+3y-14 = 0 3. y+1=6x^2-4=x+11 4. 已知a是常數。若拋物線y=ax^2-4x+2與直線y=3x+1相交於2個相異點,求a值的範圍。 5. 1/x+1 + 1/x-1 = 3/4 謝謝,萬分感激,望好心人幫幫忙!!
最佳解答:
1. 3x + y = 7 ...... [1] x2 + y2 =41 ...... [2] 由 [1] : y = 7 - 3x ...... [3] 把 [3] 代入[2] 中: x2 + (7 - 3x)2 =41 x2 + 49 - 42x + 9x2 =41 5x2 - 21x + 4 = 0 (5x - 1)(x - 4) = 0 x = 1/5 或 x = 4 把 x 之值代入[3] 中: 當 x = 1/5: y = 7 - 3(1/5) y = 32/5 當 x = 4: y = 7 - 3(4) y = -5 答案:x =1/5, y = 32/5 或 x = 4, y = -5 ===== 2. x2 + y2 + 6x- 8y = 0 ...... [1] x + 3y - 14 = 0 ...... [2] 由 [2]: x = 14 - 3y ...... [3] 把 [3] 代入[1]: (14 - 3y)2 + y2 + 6(14- 3y) - 8y = 0 196 - 84y + 9y2 + y2 +84 - 18y - 8y = 0 y2 - 11y + 28 = 0 (y - 4)(y - 7) = 0 y = 4 或 y = 7 把 y 之值代入 [3] 中: 當 y = 4: x = 14 - 3(4) x = 2 當 y = 7: x = 14 - 3(7) x = -7 答案: x = 2, y = 4 或 x = -7, y = 7 ===== 3. y + 1 = x + 11 ...... [1] 6x2 - 4 = x + 11 ...... [2] 由 [2]: 6x2 - x - 15 = 0 (3x - 5)(2x + 3) = 0 x = 5/3 或 x = -3/2 把 x 之值代入 [3] 中: 當 x = 5/3: y + 1 = (5/3) + 11 y = 35/3 當 x = -3/2: y + 1 = (-3/2) + 11 y = 17/2 答案: x = 5/3, y = 35/3 或 x = -3/2, y = 17/2 ===== 4. y = ax2 - 4x + 2 ...... [1] y = 3x + 1 ...... [2] [1] = [2]: ax2 - 4x + 2 = 3x + 1 ax2 - 7x + 1 = 0 由於有兩個交點,故以上方程式有兩個相異的實根,判別式 Δ > 0 (-7)2 - 4 * a * 1 > 0 49 - 4a > 0 4a < 49 a < 49/4 ===== 5. [1/(x + 1)] + [1/(x - 1)] = 3/4 [(x - 1) + (x + 1)] / [(x + 1)(x - 1)] = 3/4 2x / [(x + 1)(x - 1)] = 3/4 3(x + 1)(x - 1) = 4(2x) 3x2 - 3 = 8x 3x2 - 8x - 3 = 0 (3x + 1)(x - 3) = 0 x = -1/3 或 x = 3
其他解答:
咁岩... 大家都係15:10哥時發.. 你快過我幾秒中...
此文章來自奇摩知識+如有不便請留言告知
F.4maths續方程發問:
解下列各聯立方程。 1. { 3x+y = 7 x^2+y^2 = 41 2. { x^2+y^2+6x-8y = 0 x+3y-14 = 0 3. y+1=6x^2-4=x+11 4. 已知a是常數。若拋物線y=ax^2-4x+2與直線y=3x+1相交於2個相異點,求a值的範圍。 5. 1/x+1 + 1/x-1 = 3/4 謝謝,萬分感激,望好心人幫幫忙!!
最佳解答:
1. 3x + y = 7 ...... [1] x2 + y2 =41 ...... [2] 由 [1] : y = 7 - 3x ...... [3] 把 [3] 代入[2] 中: x2 + (7 - 3x)2 =41 x2 + 49 - 42x + 9x2 =41 5x2 - 21x + 4 = 0 (5x - 1)(x - 4) = 0 x = 1/5 或 x = 4 把 x 之值代入[3] 中: 當 x = 1/5: y = 7 - 3(1/5) y = 32/5 當 x = 4: y = 7 - 3(4) y = -5 答案:x =1/5, y = 32/5 或 x = 4, y = -5 ===== 2. x2 + y2 + 6x- 8y = 0 ...... [1] x + 3y - 14 = 0 ...... [2] 由 [2]: x = 14 - 3y ...... [3] 把 [3] 代入[1]: (14 - 3y)2 + y2 + 6(14- 3y) - 8y = 0 196 - 84y + 9y2 + y2 +84 - 18y - 8y = 0 y2 - 11y + 28 = 0 (y - 4)(y - 7) = 0 y = 4 或 y = 7 把 y 之值代入 [3] 中: 當 y = 4: x = 14 - 3(4) x = 2 當 y = 7: x = 14 - 3(7) x = -7 答案: x = 2, y = 4 或 x = -7, y = 7 ===== 3. y + 1 = x + 11 ...... [1] 6x2 - 4 = x + 11 ...... [2] 由 [2]: 6x2 - x - 15 = 0 (3x - 5)(2x + 3) = 0 x = 5/3 或 x = -3/2 把 x 之值代入 [3] 中: 當 x = 5/3: y + 1 = (5/3) + 11 y = 35/3 當 x = -3/2: y + 1 = (-3/2) + 11 y = 17/2 答案: x = 5/3, y = 35/3 或 x = -3/2, y = 17/2 ===== 4. y = ax2 - 4x + 2 ...... [1] y = 3x + 1 ...... [2] [1] = [2]: ax2 - 4x + 2 = 3x + 1 ax2 - 7x + 1 = 0 由於有兩個交點,故以上方程式有兩個相異的實根,判別式 Δ > 0 (-7)2 - 4 * a * 1 > 0 49 - 4a > 0 4a < 49 a < 49/4 ===== 5. [1/(x + 1)] + [1/(x - 1)] = 3/4 [(x - 1) + (x + 1)] / [(x + 1)(x - 1)] = 3/4 2x / [(x + 1)(x - 1)] = 3/4 3(x + 1)(x - 1) = 4(2x) 3x2 - 3 = 8x 3x2 - 8x - 3 = 0 (3x + 1)(x - 3) = 0 x = -1/3 或 x = 3
其他解答:
咁岩... 大家都係15:10哥時發.. 你快過我幾秒中...
文章標籤
全站熱搜
留言列表